Welcome

Welcome to official website of PRES

Polymer-Coated Catalyst Protects ‘Artificial Leaf’

Due to the fluctuating availability of solar energy, storage solutions are urgently needed.

One option is to use the electrical energy generated inside solar cells to split water by means of electrolysis, in the process yielding hydrogen that can be used for a storable fuel. Researchers at the HZB Institute for Solar Fuels have modified so called superstrate solar cells with their highly efficient architecture in order to obtain hydrogen from water with the help of suitable catalysts. This type of cell works something like an “artificial leaf.” But the solar cell rapidly corrodes when placed in the aqueous electrolyte solution.

Now, Ph.D. student Diana Stellmach has found a way to prevent corrosion by embedding the catalysts in an electrically conducting polymer and then mounting them onto the solar cell’s two contact surfaces, making her the first scientist in all of Europe to have come up with this solution. As a result, the cell’s sensitive contacts are sealed to prevent corrosion with a stable yield of approx. 3.7 percent sunlight.

Hydrogen stores chemical energy and is highly versatile in terms of its applicability potential. The gas can be converted into fuels like methane as well as methanol or it can generate electricity directly inside fuel cells. Hydrogen can be produced through the electrolytic splitting of water molecules into hydrogen and oxygen by using two electrodes that are coated with suitable catalysts and between which a minimum 1.23 volt tension is generated. The production of hydrogen only becomes interesting if solar energy can be used to produce it. Because that would solve two problems at once: On sunny days, excess electricity could yield hydrogen, which would be available for fuel or to generate electricity at a later point like at night or on days that are overcast.

Comments are closed.