Welcome

Welcome to official website of PRES

Wind Energy

Advantages and Disadvantages of Wind-Generated Electricity A Renewable Non-Polluting Resource Wind energy is a free, renewable resource, so no matter how much is used today, there will still be the same supply in the future. Wind energy is also a source of clean, non-polluting, electricity. Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases. According to the U.S. Department of Energy, in 1990, California’s wind power plants offset the emission of more than 2.5 billion pounds of carbon dioxide, and 15 million pounds of other pollutants that would have otherwise been produced. It would take a forest of 90 million to 175 million trees to provide the same air quality. Cost Issues Even though the cost of wind power has decreased dramatically in the past 10 years, the technology requires a higher initial investment than fossil-fueled generators. Roughly 80% of the cost is the machinery, with the balance being site preparation and installation. If wind generating systems are compared with fossil-fueled systems on a “life-cycle” cost basis (counting fuel and operating expenses for the life of the generator), however, wind costs are much more competitive with other generating technologies because there is no fuel to purchase and minimal operating expenses. Environmental Concerns Although wind power plants have relatively little impact on the environment compared to fossil fuel power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and birds and bats having been killed (avian/bat mortality) by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants. Supply and Transport Issues The major challenge to using wind as a source of power is that it is intermittent and does not always blow when electricity is needed. Wind cannot be stored (although wind-generated electricity can be stored, if batteries are used), and not all winds can be harnessed to meet the timing of electricity demands. Further, good wind sites are often located in remote locations far from areas of electric power demand (such as cities). Finally, wind resource development may compete with other uses for the land, and those alternative uses may be more highly valued than electricity generation. However, wind turbines can be located on land that is also used for grazing or even farming.

PV Market Analysis: Mid-2011 Pause for Reflection — Just Don’t Pause for Long

n the volatile photovoltaic industry, there is not a lot of time to pause for reflection – this ain’t Walden Pond, after all, for those who know their Thoreau: “Our life is frittered away by detail, simplify, simplify.” In this fast moving, detail-strewn industry, it seems all fritter and no simplification, but fritter we must. What follows is a very brief pause for reflection – but we shouldn’t pause for long. Mid-year finds average module prices down for all technologies, with reports of some thin films at ~80 US cents/Wp (this is a region-specific price for a-Si), and prices for some c-Si manufacturers at <$1.40/Wp. Sufficient inventory on the demand side is leading to installer-installer sales, further pressuring down prices for technology manufacturers. The price pressure on technology manufacturers is unlikely to ease in the future as lower incentives push prices down, under the assumption that technology prices correctly represent manufacturing costs. Figure 1 (below) presents average prices over time in the PV industry. Though costs have fallen consistently since the beginning of the terrestrial industry, prices have increased during periods of profit taking and decreased to at or below cost during periods of aggressive pricing for share and slow demand. null Given thin-film and crystalline prices for 2006-2011 (see Table 2 below), we can conclude that thin-film prices are being pressured down by inexpensive crystalline product. This situation is pressuring margins for all technology manufacturers in regions other than China. null Announcements of average technology prices at year-end of ~$1.00//Wp for c-Si abound, along with forecasts of an Armageddon-like 2011 in terms of demand keeping pace with enthusiasm over the market in the US based, apparently, on frantic buying as the grant-in-lieu of Investment Tax Credit (ITC) runs out its clock at the end of the year. The strong growth experienced by the PV industry in the past five years (at a compound annual rate of 65 percent) is not due to luck, nor is it due to global recognition that a switch to renewables is imperative to the survival of the planet. This growth is due to decades of technology development, market development, business strategy development and anxious lobbying for the incentives that drive growth towards grid-connected applications. In 2010, the industry reached multi-gigawatt scale in terms of annual growth and cumulative capacity. Over 40 GWp of PV technology has been shipped into global markets, and 91 percent of it shipped between 2005 and 2010. This level of cumulative capacity on the demand side is due completely to incentives, and primarily to the feed-in tariff (FiT) model that began in Germany. All PV industry pioneers persevered through the incentive-drought years, but the specific individuals responsible for Germany’s EEG Law are Dr Hermann Scheer, Dr Klaus Topfer, Dietmar Schutz, Hans-Josef Fell, Sigmar Gabriel, Josef Goppel and Jurgen Trittin. It is important to remember these names, and it is important to remember all the lessons learned since the early 1970s because the incentives that drove the industry to its heights are changing. Figure 2 (below) presents the growth of the PV industry, globally, from 2005 through an estimate for 2011. This preliminary estimate for 2011 is based on the conservative forecast and takes into account current incentive levels and changes in FiT programmes, in infrastructure (transmission) and in country and US state debt and income levels, among other variables. INCENTIVES: GIVEN AND TAKEN AWAY (OFTEN FAST) The feed-in tariff (FiT) incentive (initially) provided a stable base for investment. The rules were simple – a system was installed, and a payment provided at a certain rate for, typically, 20 years. It was not long after the beginning of the FiT age (as it will someday be known) that investors recognised PV as a stable investment. One result of this recognition was that systems grew to multi-megawatt size. These multi-megawatt fields (utility scale) sprang up in response to the FiT. Without the FiT, it is unlikely that these large applications would dominate the market now. That these extremely large installations coincided with a global financial crisis helped to hide the fact that this application category also overheated markets, leading to rapid (and ever more rapid) changes in FiT rules and rates and now, candidly, to a fall in the incentive’s popularity. To be clear, governments do not seem ready to “dump” the FiT altogether, but they are certainly committed to controlling it. There are good examples of control and bad examples. Germany stands as a good example, as it is forcing the FiT down in response to market behaviour. The UK stands as a bad example for changing the rules before its tariff even got to mid-stream. Other examples of bad behaviour come from Spain, where new rules act as a retroactive degression, and the Czech Republic, where a retroactive tax, well, acts as a retroactive degression. Thus was instability injected into what were formerly viewed as stable incentives. Other countries are toying with auction-based FiTs (that act as power purchase agreements) with varying degrees of success. Unfortunately, the auction process assumes a rational bidder in an industry that requires an incentive of some type for a market to develop. In this climate, as with the stable incentives, the actors will act against their own best interest to win. In the case of stable FiTs, the actors will overheat the market (even as the tariff rate decreases) in order to avoid losing out. Regarding this final behaviour, this means that despite the low tariff in Germany (which thankfully decided against a mid-year decrease), and despite problems with Italy’s tariff, these markets will experience strong activity towards the end of the year. In general, the industry does not favour caps, but hard annual caps would ensure that markets did not overheat and collapse. MARKETS The first half of 2011 has been slow in terms of actual work and accelerated in terms of announcements. At least one large system (CSP) broke ground, finally, in the US only to find progress stalled by concerns about the welfare of endangered species and Native American cultural issues. Activity in Germany was slow enough for the government to put off the mid-year degression. From January 2011 to the end of April 2011 about 715 MWp were installed. During the same period of 2010, 1.2 GWp were installed, a difference of more than 450 MWp. At an average of 178.8 MWp per month (granted an unlikely scenario), Germany could install under 2.5 GWp in 2011 – though, again, this is unlikely. However, likely or not, a significantly slower market in Germany must be considered. The German system includes a premium for self-consumption that should serve as a model for other countries when developing FiT policies – if, indeed, these policies continue. The current trend toward PPA-style FiTs with rates based on auction does not favour system owners. Self-consumption tariffs encourage use of PV as a distributed generation source, also encouraging energy consumers to own the means of electricity production rather than rent electricity from the utility. The step function for reduction of the German tariff is as follows: 3500 MWp in new installations, 9 percent degression; 4500 MWp, 12 percent degression, and so forth. For Italy in 2010, with reports from the government itself that a likely 6 GWp had been installed, it appears that 2.3 GWp is closer to the truth (though far more was shipped in than was a) installed and b) approved). Changes to the tariff are not robust enough to slow demand, while the controversial 10% bonus for EU content is a problematic boon to European manufacturers. The domestic content bonus is problematic because it is very difficult to police the internal content of a module and, frankly, the price of modules will likely increase. The rhetorical question is simply: Is the bonus more of an incentive than less expensive technology manufactured elsewhere? The tragedy in Japan, which must not be forgotten, provided a necessary and ugly reality check for everyone about what happens when something goes wrong with nuclear power. Germany has made significant changes in its policy because of the tragedy, and the solar market in Japan is currently quite strong and likely to top 1 GWp in 2011. On 27 June in the US, emergencies at two of the country’s nuclear facilities will hopefully give its politicians pause when considering new investment in the technology while encouraging investment in solar and other renewables. The nuclear facility in Los Alamos, New Mexico, was threatened by a fast-moving wildfire, while the Fort Calhoun facility in Nebraska was threatened by flood. Candidly, it is unlikely that these near-disasters will foment an immediate change in US policy, but they should lead to some pause before further commitments – essentially, how is ‘too expensive’ defined? North America has a mix of good and possibly bad news. The US had a slow start, with California underperforming and New Jersey experiencing early strong, and likely sustainable, growth. The grant-in-lieu of ITC is set to expire at the end of 2011, which should help module sales into the US at the end of the year. Unfortunately, a sluggish economy and the 2012 election will likely keep US growth flat at under 1 GWp in 2011 (see Table 1 below). Utilities in the US are also finding that meeting state renewable portfolio standard (RPS) requirements is expensive, and a hard look at the penalties for noncompliance is important before too many plans based on RPS requirements go forward. In Canada, if the October elections in Ontario bring a conservative shift, its still-promising FiT could be a casualty. Table 1 (page 24) offers a forecast for the US by application. null For most markets, particularly for multi-megawatt installations, infrastructure (transmission and distribution) concerns are a roadblock even in a perfect incentive world. Some programmes are beginning to more visibly favour self-consumption, which highlights the distributed generation attributes of PV technologies. WHERE WE ARE AND WHERE WE ARE GOING So, mid-year with demand low, prices lower, expectations and inventory high and anxiety growing. Truthfully, eventually there will be a correction, though it may not come while manufacturers are willing to, essentially, give product away. As always on the technology side, the PV industry is only limited by its willingness to lose money. Currently, with inventory increasing and demand flat, prices will decrease along with margins and more pain will be felt. During 2011 demand will grow, primarily because current capacity levels will not allow otherwise. Inventory in the PV industry is becoming a serious issue, gaining importance along with rising capacity levels . Figure 3 (below) offers a picture of industry capacity and shipments to 2015. Shipments are a reflection of demand, though a murky one. Essentially, demand and supply operate like an accounting ledger and both sides must work out to equal numbers. Production and installation are different figures. In 2011 installations will lag, perhaps significantly, behind shipments, with inventory complicating the situation. Currently, much of the held inventory is in China. Capacity continues to increase despite slow demand in 2011, primarily because of industry expectations of the next boom in demand. Outsourcing and rebranding, historically common in the PV industry, continue, particularly with low prices from manufacturers in China. In fact, even manufacturers in China are outsourcing for lower-priced technology. This year will see growth, but it will come with prices that are too low to support healthy margins. The largest growth will likely be in announcements, many of which will be cancelled. Meanwhile, the global economy continues to recover too slowly, while debt levels in countries such as Greece threaten to upend fragile growth. The PV industry, and solar in general, will need to develop business strategies that do not rely on incentives. Stoppage is highly unlikely. Unused capacity is expensive, and there is just too much unused capacity to ignore.

Another record year for U.S. solar energy industry

U.S. solar energy industry is currently the nation’s fastest growing industry so it’s really no surprise that U.S. solar power sector is well on track for another record year. In fact, according to the latest report coming from IHS iSuppli, U.S. total photovoltaic (PV) capacity will achieve an increase of 166% compared to last year, and should reach 2.4GW by the end of this year. In 2010 total U.S. photovoltaic installations were just over 900MW and the main reason for this massive growth in PV capacity this year was the implementation of many utility-scale solar power projects. Continue reading Another record year for U.S. solar energy industry

Sun Strikes It Hot: What’s Happening in the Global Solar Thermal Markets?

Growth in solar heat is still on an upward curve – provided you take the global view. Yet while China is booming and India and Brazil are positive, key European markets are still experiencing worry. In Europe, almost 50 percent (48 percent in 2007, to be precise) of the total energy consumed is used to produce heat. Almost a third of that goes into high-temperature industrial processes, but over 40% goes into heating and providing hot water for our homes. The remainder is used in commercial/service sectors and low-temperature industrial processes. And almost all this heat is produced from fossil fuels, whether directly or via electricity. Partly because it needs to be produced near to its place of use, making it less tradable than electricity, heat as a commodity is generally regarded as somehow lower status than electricity. Even more so, it seems, with renewable heat – wood pellets and solar thermal just don’t seem to have the high-tech appeal of shiny PV, nor the majesty of wind turbines. Meanwhile, while the electricity industry still searches for a truly applicable form of energy storage, heat lends itself well to storage on many scales. It shouldn’t be underestimated. Solar heat has become a surprisingly big player. According to the 2011 report from the IEA solar heating and cooling programme Solar Heat Worldwide (authored by Werner Weiss and Frank Mauthner), the solar thermal collector capacity in operation worldwide at the end of 2009 was 172.4 GWth. Across the 53 countries covered in the report, the annual yield of these water-based collectors was 141,775 GWh, or 510,338 TJ (the relatively small amount of air-based solar thermal is excluded). This corresponds to an oil equivalent of 14.4 million metric tonnes and an annual CO2 saving of 46.1 million metric tonnes. Though the final numbers for 2010 are not in, capacity was expected to have reached 196 GWth by the end of 2010, producing 162,000 GWh of output. This level of capacity is very close to that of wind power globally (194 GW), which admittedly has a greater yield than solar thermal. However, the contribution made by solar thermal heat far exceeds the capacity and output of solar PV, geothermal power, or any other ‘new’ renewable (though biomass and large hydro contribute more). While most of the installed capacity is currently used for production of domestic hot water – the simplest solar thermal application – the scale and range of applications is becoming much more diverse. In some European countries solar combi-systems are widely used to provide space heating in addition to hot water, and district heating by solar is also expanding. Plus, the potential for solar process heat (for commercial/industrial uses where hot water is needed) is starting to be exploited. Figure 1 (shown overleaf on page 47) shows the distribution by application in the top 10 markets. By the end of 2009, some 59 percent of the world’s solar thermal (101.5 GWth), was installed in China, with Europe accounting for 32.5 GWth. The US and Canada had a combined capacity of 15 GWth. Much of this (over 80 percent in the US) is unglazed collectors for pool heating. These three regions together account for 86.4 percent of the global total. Counting all solar thermal (including the unglazed collectors widely used in the US for pool heating), China, the United States and Germany are world leaders in total installed area/capacity. Turkey has retained its position as world number four. However, if unglazed collectors are removed from the calculation, Turkey and Germany are almost equally placed, behind China. The remaining installed capacity is made up by various countries including Australia and New Zealand (5.2 GWth), Central and South America (4.7 GWth), the Asian countries of India, South Korea, Taiwan and Thailand (4.6 GWth), Japan (4.3 GWth), the Middle East represented by Israel and Jordan (3.5 GWth) and a handful of African countries (1.1 GWth), namely Namibia, South Africa, Tunisia and Zimbabwe. NEW INSTALLATIONS When it comes to new installations, 2009 was a year of impressive growth for solar thermal, with an extra 36.5 GWth of new capacity being added. This means that collector installations were up by over 25 percent on the previous year. (If the predictions in the IEA report are correct, at least 23 GWth will have been added in 2010 as well.) And, 80.6 percent of those 2009 additions (29.40 GWth) were installed in China, with the remaining 10.2 percent installed throughout Europe. The remainder was spread between the US/Canada, Australia/New Zealand and Central/South America (about 2 percent in each of these three regions), with the rest of Asia, the Middle East and Africa making up the remainder. The report says that Australia reported a 78.5 percent growth in annual installations of glazed water collectors in response to a new financial incentive scheme, while in Mexico, the total number of glazed water collector installation grew by 31.5 percent – mainly due to a broad market campaign for solar water heaters, with low interest rates helping. TYPES OF APPLICATION AND TECHNOLOGY As Solar Heat Worldwide reports, the most sophisticated markets for different solar thermal applications are found in Spain, Germany and Austria due to their continuous R&D activities. They include systems for heating water, systems for space heating of single- and multi-family houses and hotels, large-scale plants for district heating and a growing number of systems for air conditioning, cooling and industrial applications. By the end of 2009, 115 solar-supported district heating networks and 11 solar-supported cooling systems with an installed capacity of 350 kWth (equivalent to 500 m2) were installed in Europe. The total installed capacity of these large-scale systems is equal to 166 MWth. Canada and Saudi Arabia have also installed large systems. The district heating system installed at Drake Landing in Canada has an installed capacity of 1.6 MWth (2293 m2). The world’s largest system, with a capacity of 25.4 MWth (36,305 m2), was commissioned in April 2011 in Riyadh, Saudi Arabia. null As the IEA study points out, because Chinese installations overwhelmingly use evacuated tube collectors, the growth rates by type of glazed water collector in 2009 are high for vacuum tubes (an increase of 34.5 percent) and almost stagnating (increase of 2.4 percent) for flat plate collectors. Though the IEA figures don’t include 2010, all the evidence suggests that this pattern continued in 2010 as well. This means that many of the flat plate collector manufacturers in Europe faced a challenging economic year in 2009, and again in 2010, following on directly from the tremendous growth rates in 2008. SOME MARKETS IN DECLINE Following an extremely buoyant 2008, 2009 saw some key markets – most crucially the ‘workhorse’ market of Germany – experience a sharp downturn in new installations. In 2009 Germany saw a fall of 23.1 percent in newly installed capacity of glazed collectors compared with the previous year; sales in Japan fell by 31.8 percent, and in the United States installations of glazed water collectors decreased by 8.5 percent. As latest figures from the European trade organization ESTIF (Solar Thermal Markets in Europe, June 2011) reveal, that trend continued throughout 2010 too in established markets. Of the markets with over 200,000 m2 collector area (Germany, Italy, Spain, Austria, France and Greece) all but Greece and Italy took a tumble last year – and in markets of this size that has an impact that ripples throughout the industry. Said ESTIF president, Robin Welling: “The solar thermal industry has experienced the full impact of the 2008 financial crisis as the construction sector has been particularly affected by the economic recession that followed. We expected to derive some benefit from the combined implementation of the binding renewable targets and higher energy performance standards – but this process is only beginning!” null Following the 2009 drop of 23 percent, Germany’s market dropped by almost 29 percent in 2010, meaning the market for new installations (805 MWth) was almost back to its 2007 level, and close to half the record level installed in 2008. The spikes and troughs of Germany’s growth curve for solar thermal reflect policy uncertainty, and for the last two years credit restrictions and relatively low fossil fuel prices have taken their toll. Most specifically, by failing to give clarity on financing, a new ‘market stimulation programme’ has had the opposite effect from the one intended. In its June 2011 report, ESTIF called the ‘devastating’ effect of this policy especially disappointing given Germany’s history of providing good support measures for renewables, not least the renewable heat obligation (Waermegesetz). Austria, too, saw its installation levels drop – by 21.4 percent in 2010 according to ESTIF, bringing it back to 2007 levels (though the first months of 2011 saw an encouraging upturn). The explanation here is of a maturing market, with purchasers/investors needing some kind of motivation, such as higher gas prices or improved support mechanisms, to get them to take the step of installing now, rather than delaying a decision until later. The Greek and Italian markets increased slightly (Italy by 3.2 percent), with the Italian market confirming its 2009 level (around 500,000 m2). Its installed capacity of 1.87 GWth secures Italy’s place as number two in Europe, in terms of total installations. Italy has also set itself a highly ambitious solar thermal target for 2020, intending to expand from under 2 GWth installed by end of 2010 to over 25 GWth by 2020. By comparison, Germany plans to double its capacity from 9.7 GWth at end of 2010 to just over 20 GWth by 2020 (see section on National Renewable Energy Action Plans, below). In Spain, two years of falling numbers have seen the market contract almost to 2007 levels. Some of the newer markets, below 200,000 m2 but above 50,000 m2, fared rather better in terms of percentage growth. Some developing markets, still below this group, consisting of Portugal, Poland, Switzerland, Czech Republic, Denmark and the United Kingdom, grew by a total of 8.8 percent, with a combined increase of 40,000 m2. However this is not quite enough, points out ESTIF, to compensate for the decrease recorded in those larger markets. INSTALLATIONS REVEAL MARKET PENETRATION Solar thermal capacity is often measured on two scales: first, that of a country or region’s total installations in square metres of collector or megawatts thermal (MWth); second, the amount installed per capita, which allows better comparison of levels of market penetration. Like Germany, the tiny island of Cyprus has long been a leader in solar thermal installations. In 2010 it had 2.86 GWth capacity (compared with Germany’s 9.7 GWth), but a massive 623 kWth per capita compared with Germany’s 118 kWth per capita. NATIONAL RENEWABLE ENERGY ACTION PLANS By February 2011, all EU member states had presented their National Renewable Energy Action Plans (NREAPs) for achieving their share of Europe’s goal to source 20% of its final energy consumption from renewable energy. Countries had been asked to consider renewable heating and cooling, but – in spite of a vigorous campaign – no formal requirement was included for a specific proportion of heat measures. Consequently, the NREAPs from the 27 different member states show extremely diverse approaches to solar thermal. Four countries (Estonia, Finland, Latvia and Romania) did not include solar thermal at all, while five others (Bulgaria, Denmark, the Netherlands, Sweden and the UK) presented extremely modest targets. (In some cases the official target is not in line with actual installations being made, says ESTIF.) According to Xavier Noyon, ESTIF secretary general, analysis of the consolidated NREAPs ‘reveals that over the next decade the share of solar thermal should rise by 15 percent per annum.’ The NREAPs focus on energy delivery, rather than installed capacity, and the NREAPs have calculated yield in terms of thousands of tonnes of oil equivalent (ktoe). By and large, NREAPs of the established solar thermal markets are expecting strong, but not spectacular, growth rates over the decade 2010 to 2020. However, a few are expecting really dramatic increases, as a look at the NREAPs (on the European Commission website) reveals. (The key markets are listed in order of solar yield in 2020): Italy expects a rise of 1400 percent, from 113 ktoe to 1586 ktoe Germany expects a rise of 300 percent, from 440 ktoe to 1245 ktoe France expects a rise of 700 percent, from 130 ktoe to 927 ktoe Spain expects a rise of 400 percent, from 155 ktoe (approx) to 644 ktoe Poland expects a rise of 2400 percent, from 21 ktoe to 506 ktoe Greece expects a rise of160 percent, from 216 ktoe to 355 ktoe Austria expects a rise of 210 percent, from 127 ktoe to 269 ktoe Solrico has just completed its third ISOL survey, which aims to act as a barometer of market/industry confidence by surveying solar thermal businesses in 16 key markets worldwide. It reveals an upward trend in market optimism in China, Brazil and India. India’s Solar India Mission, launched in 2009, targets the installation of 20 million m2 of solar thermal by 2022, and strong financial support measures have been put in place to help achieve this. In the United States, according to the latest report from SEIA/Greentech Media, Hawaii, California and Arizona are likely to be the three states seeing significant growth, thanks to state incentives. Back in Europe, Solrico reports that confidence in the already slowed markets has not yet improved – what’s more, optimism in Europe’s Mediterranean markets, where Greece, Portugal and Spain have all been experiencing economic woes, is also reduced. Confidence in the Czech Republic market, buoyant early in 2010, has plummeted since the withdrawal of its support programme in October. Solrico reveals that the most attractive markets for solar thermal – averaged over the three surveys – are (in descending order) China, Poland, Turkey, India, Greece and Brazil. Meanwhile, Germany is cautiously optimistic, but has suffered a significant loss of confidence.

شمسی توانائی سے بجلی تیار کرنیکا منصوبہ تیار

شمسی توانائی سے بجلی حاصل کرنے کا منصوبہ تیار کرلیا گیا ہے جس کے تحت پاکستان انجینئرنگ کونسل نے اسلام آباد میں چھ اہم مقامات پر شمسی توانائی پیدا کرنے والے پینل لگائے ہیں۔ ان پینلز پر کل ۵۱ لاکھ روپے کا خرچا ہوا ہے جبکہ تین کلوواٹ بجلی پیدا ہو سکے گی۔ اس بات کو پاکستان انجینئرنگ کونسل کی چیئرپرسن انجینئر رخسانہ زبیری نے ایک ٹی وی پروگرام میں گفتگو کرتے ہوئے بتایا۔ انہوں نے بتایا کہ ان پینلز کے ذریعے سپریم کورٹ کے اہم دفاتر کو چوبیس گھنٹے بجلی فراہمی ہو گی۔ رخسانہ زبیری نے بتایا کہ شمسی توانائی کوئی نئی ٹیکنولوجی نہیں،پہلے یہ مہنگی تھی مگر اب اس کی لاگت خاصی کم ہو گئی ہے اور ہم اس کے ذریعے لوڈشیڈنگ سے جان چھڑا سکتے ہیں۔ شمسی توانائی کا سسٹم ہر گھر کی چھت پر نصب کر کے تمام لوگوں کی گھریلو ضروریات کو پورا کیا جا سکتا ہے اور پھر واپڈا اورکے ای ایس سی صرف متبادل کے طور پر استعمال ہوں گے، اس سلسلے میںلوگوں کو آگاہی دینے کی ضرورت ہے۔ دنیا کے بڑے ترقی یافتہ ممالک اپنی توانائی کا ایک بڑا حصہ شمسی توانائی سے حاصل کرتے ہیں۔ پلاننگ کمیشن آف پاکستان کے پارکنگ ایریا میں بھی شمسی توانائی کے پینل لگائے جائیں گے۔تقریباً۵۵اہم جگہوں پر شمسی توانائی کو نصب کیا جارہا ہے۔ ا

Renewable and Non-Renewable Energy

Renewable / Alternative Energy Softwares

Coming Soon!

Renewable / Alternative Energy Documents

Coming Soon!

Renewable / Alternative Energy Books

Coming Soon!

توانائی کے ذرائع اور موجودہ صورتحال

اگرروزمرہ زندگی پر نظر دوڑائی جائے تو سب سے زیادہ اہمیت کی حامل بجلی ہے۔ ہماری روزمرہ استعمال کی تمام تر اشیاءکا انحصار بجلی پر ہے اگر بجلی نہ ہوتو ہر چیز منجمد ہو کررہ جائے۔ بجلی کی کہانی پر نظر دوڑائی جائے تو یہ کچھ زیادہ پرانی نہیں ہے اس کا آغاز سترھویں صدی میں ایک جرمن سائنسدان کے ہاتھوں ہوا اور پھر مختلف مراحل طے کرنے کے بعدپہلا بجلی گھر1879ء میں امریکہ میں تعمیر ہوا جس کے بعد مختلف مقامات پر اس کی تنصیب کا آغاز کیا گیا۔بجلی کو اکثر و بیشتر توانائی کے نام سے بھی پکارا جاتا ہے اوردنیا میں اس کے حصول کے کئی طریقے اپنائے جاچکے ہیں۔ جن میں پن بجلی (ہائیڈرو پاور)، تھرمل بجلی (فوسل)، ایٹمی بجلی، شمسی توانائی، سمندر کی توانائی (ٹائیڈل انرجی) اور ہوا کی توانائی (ونڈ انرجی) قابل ذکر ہیں۔ پاکستان میں بجلی کی پیداواری صلاحیت تقریبًا 19000 میگاواٹ ہے، جو کہ توانائی کے متعدد ذرائع جن میں شمسی، ایٹمی، ہوا، تیل ، کوئلہ اور گیس شامل ہیں سے حاصل کی جاتی ہے۔پاکستان پن بجلی سے تقریبًا 6500 میگا واٹ بجلی حاصل کرتا ہے۔ پن بجلی کے منصوبے چونکہ کثیر المقاصد ہوتے ہیں لہذا اس پر بڑی مقدار میں سرمایہ کاری کی ضرورت ہوتی ہے۔ اس لئے یہ منصوبے حالیہ توانائی کے بحران پر قابو پانے کے لئے موئثر نہیں تاہم متبادل ذرائع سے بجلی کی کمی کو پورا کیا جا سکتا ہے۔پاکستان جن منصوبوں سے پن بجلی حاصل کرتا ہے ان میں غازی بھروتھا ڈیم، منگلا ڈیم، تربیلا یم، چشمہ ڈیم، رسول ڈیم، مالاکنڈ ڈیم، درگئی ڈیم، باری پور ڈیم، شادی وال ڈیم، چیہوکی ڈیم، رینالا ڈیم، چترال ڈیم، کرم گڑی ڈیم اور جگران ڈیم شامل ہیں۔ اس کے علاوہ کئی دیگر منصوبے زیر تکمیل ہیں جو جلد ہی مکمل ہو جائیں گے۔ ہمارا ملک توانائی کی ضروریات کا دوسرا بڑا حصہ تھرمل بجلی سے حاصل کرتا ہے، جس میں ایندھن (تیل و گیس) سے بجلی پیدا کی جاتی ہے۔ تیل و گیس سے حاصل کردہ بجلی پن بجلی کے مقابلے میں نسبتًا مہنگی ہوتی ہے لیکن توانائی کی ضروریات کو پورا کرنے کے لئے تھرمل بجلی کا سہارا لیا گیا۔ کیونکہ یہ منصوبے توانائی کے بحران کے پیش نظر شروع کیئے گئے ہیں اس لیئے ملکی حالات کی بہتری کا مضبوط اشارہ ملتے ہی ان منصوبوں سے بجلی کی پیداواربند کر دی جائے گی۔ پاکستان تھرمل بجلی سے تقریبًا 2800 میگاواٹ بجلی حاصل کر رہا ہے۔ ملک میں اس وقت جو پاور پلانٹ بجلی فراہم کررہے ہیں اُن میں کیپکو، حب پاور کمپنی، بن قاسم پاور پلانٹ، جامشورو پاور کمپنی، گڈو تھرمل اسٹیشن، لال پیرا اور پکجن تھرمل اسٹیشن، اچھ پاور پلانٹ، روش پاور پلانٹ اور ٹی این بی لبرٹی پاور پلانٹ شامل ہیں۔ کوئلہ بھی بجلی پیدا کرنے کا اہم ذریعہ ہے۔ پاکستان میں کوئلہ کے وافر ذخائر تھر کے مقام پر موجود ہیں جو دُنیا کے بڑے ترین ذخائر میں سے ایک ہیں۔ ایک اندازے کے مطابق ہم کوئلے سے مسلسل 40 سال تک اپنی توانائی کی ضروریات پوری کر سکتے ہیں۔ تھر کے مقام پر کوئلہ ریت اور پانی کی تہہ تلے موجود ہے اور اس کو زمین کی تہہ سے نکالنے کا عمل انتہائی پیچیدہ ہے۔ پاکستانی سائنسدان ڈاکٹر ثمر مبارک مند کا تھر میں موجود کوئلے کے ذخیرے سے متعلق کہنا ہے کہ اس کوئلے کو زمین سے نکالنے کا عمل کافی مشکل ہے، لیکن پھر بھی اس سے وافر فائدہ اُٹھایا جاسکتا ہے۔ اُن کے مطابق اگر کوئلے کی تہہ تک ایک پائپ کے زریعے مخصوص درجہ حرارت کی گرم ہوا بھیجی جائے تو کوئلہ گیس کی شکل میں آجائے گا اور کچھ فاصلے پر ایک دوسرے پائپ کے زریعے یہ گیس زمین سے خارج ہو گی۔ اس گیس کو کول گیس کے نام سے جانا جاتا ہے۔ اس طرح ہم کوئلے کو زمین سے نکالے بغیر اس سے استفادہ حاصل کر سکتے ہیں۔ اگر اس گیس کو ریفائن کردیا جائے تو یہ گاڑیوں مین سی این جی کے متبادل کے طور پر استعمال کی جاسکتی ہے۔ اس طرح ملک میں نہ صرف گیس کے بحران پر بھی قابو پایا جاسکے گا بلکہ وافر مقدار میں توانائی کا حصول بھی ممکن ہو سکے گا۔ اگرچہ مالی مشکلات کے باعث اس منصوبے کے آغاز میں تاخیر ہورہی ہے مگر اس کے باوجود دُنیا کی متعدد کمپنیاں اس پر سرمایہ کاری کے لیئے تیار ہیں جن پر سوچ بچار جاری ہے۔ یقینًا اگر یہ منصوبہ کامیاب ہو گیاتو ہمارے ملک میںتوانائی کے بحران پر قابو پانے میں بہت مدد ملے گی۔ دُنیا کے دیگر ممالک کی طرح پاکستان نے بھی کوڑے سے توانائی کے حصول پر توجہ دینی شروع کر دی ہے اور ملک میں اپنی نوعیت کا پہلاپاور پانٹ تعمیر کیا ہے۔ یہ پلانٹ چکوال کے علاقے میں ایک کارخانے میں نصب کیا گیا ہے جس کے فضلے سے تقریباً 10 میگاواٹ توانائی حاصل کی جاتی ہے۔ اُمید کی جاتی ہے کہ اس طرح کے کئی اور منصوبوں پر جلد کام شروع کیا جائے گا۔ ہوا سے توانائی کا حصول ایک سستا اور عمدہ زریعہ ہے ایک سروے کے مطابق 1996ء میں دُنیا میں ہوا سے بجلی کی پیداوار 6.1 گیگا واٹ تھی اور 2010ء میں یہ بڑھ کر194.4گیگاواٹ ہوگئی۔ پاکستان میں بھی ہوا سے بجلی کی پیداوار کا ایک منصوبہ کام کررہا ہے جو جام پیرٹھٹھہ کے علاقے میں نصب ہے۔ جس سے 6 میگاواٹ بجلی حاصل ہو رہی ہے اوراس منصوبے کو 250 میگاواٹ تک وسیع کیاجاسکتا ہے۔ پاکستان دُنیا کے ایسے خطے میں واقع ہے جہاںتقریبًا سارا سال ہی سورج اپنی آب و تاب سے چمکتاہے اور یہاںشمسی توانائی کاحصول کافی حد تک آسان ہے۔ لہذا شمسی توانائی کے منصوبے توانائی کی کمی کو پورا کرنے میں معاون ثابت ہوں گے۔ متعدد افراد اپنی ضروریات کے مطابق مختصر پیمانے پرشمسی توانائی سے بجلی حاصل کر رہے ہیں۔ چونکہ یہ ایک سرمایہ طلب منصوبہ ہے اور اس کی تنصیب پر کافی سرمایہ درکار ہوتا ہے اس لیئے لوگ اس کو استعمال کرنے سے گریزاں ہیں۔ لیکن اگرایک مرتبہ اس کو لگا دیا جائے توہمیں سستی بجلی میسر آسکتی ہے۔ پاکستان دُنیا کی ساتویں ایٹمی قوت ہے لہذا ہماری سرحدوں کادفاع ناقابل ِتسخیرہوچکا ہے۔ لیکن پاکستان نے اس کامثبت استعمال کیا اور چین کی مدد سے ملک میں ایٹمی بجلی گھر تعمیر کیئے جن سے توانائی کی ضروریات کا کچھ حصہ پورا ہوتا ہے۔ موجودہ وقت میں چشمہ کے مقام پر دو ایٹمی بجلی گھر کام کر رہے ہیں جن سے تقرےبًا 600 میگاواٹ بجلی حاصل کی جارہی ہے۔ یہ بجلی باقی طریقوں سے نسبتًا سستی پڑتی ہے اور معیشت کے لیئے ایک سہارا ہے۔ گزشتہ 20 سالوں میں پاکستان کی توانائی کی ضروریات میں تین گُنا اضافہ ہوا ہے۔ لیکن اس ضرورت کو پورا کرنے کے لیئے توانائی کے حصول پر اس طرح کام نہیں کیا گیا جس طرح کیا جانا چاہئیے تھا۔ ضرورت اس امر کی ہے کہ سیاستدان اور سیاسی جماعتیں اپنے ذاتی مفادات کو بالائے تاک رکھتے ہوئے ملک و قوم کی ترقی کےلئے کوشاں رہیں اور توانائی کے حصول کے لیئے مختلف منصوبوں کو پایہ تکمیل تک پہنچانے کے لیئے اپنا مثبت کردار ادا کریں تاکہ عوام کی مشکلات کا سدِباب ہوسکے